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We examine the inviscid flow generated around a body moving impulsively from rest
with a constant velocity U in a constant density gradient, ∇ρ0, which is assumed
to be weak in the sense ε = a|∇ρ0|/ρ0�1, where a is the length scale of the body.
In the absence of a density gradient (ε = 0), the flow is irrotational and no force
acts on the body. When 0 < ε�1, vorticity is generated by a baroclinic torque and
vortex stretching, which introduce a rotational component into the flow. The aim is
to calculate both the flow around the body and the force acting on it.

When a two-dimensional body moves perpendicularly to the density gradient
U · ∇ρ0 = 0, the density and velocity field are both steady in the body’s frame of
reference and the vorticity field decays with distance from the body. When a three-
dimensional body moves perpendicularly to the density gradient, the vorticity field
is regular in the main flow region, DM , but is singular in a thin inner region DI

located adjacent to the body and to the downstream-attached streamline, and the
flow is characterized by trailing horseshoe vortices. When the body moves parallel
to the density gradient U × ∇ρ0 = 0, the density field is unsteady in the body’s
frame of reference; however to leading order the flow is steady in the region DM

moving with the body for Ut/a�1. In the thin region DI of thickness O(aε), the
density gradient and vorticity are singular. When U × ∇ρ0 = 0 this singularity leads
to a downstream ‘jet’ with velocities of O(−(U · ∇ρ0)Ua/(ρ0U)) on the downstream
attached streamline(s). In the far field the flow is characterized by a sink of strength
CMV(U · ∇ρ0)/2ρ0, located at the origin, where CM is the added-mass coefficient of
the body and V is the body’s volume.

The forces acting on a body moving steadily in a weak density gradient are
calculated by considering the steady relative velocity field in region DM and evaluating
the momentum flux far from the body. When U · ∇ρ0 = 0, a lift force, CLV(U×∇ρ0)×
U , pushes the body towards the denser fluid, where the lift coefficient is CL = CM/2
for a three-dimensional body, that is axisymmetric about U , and is CL = (CM + 1)/2
for a two-dimensional body. The direction of the lift force is unchanged when U
is reversed. A general expression for the forces on bodies moving in a weak shear
and perpendicularly to a density gradient is calculated. When U × ∇ρ0 = 0, a drag
force −CDV(U · ∇ρ0)U retards the body as it moves into denser fluid, where the drag
coefficient is CD = CM/2, for both two- and three-dimensional axisymmetric bodies.
The direction of the drag force changes sign when U is reversed. There are two
contributions to the drag calculation from the far field; the first is from the wake ‘jet’
on the attached streamline(s) caused by the rotational component of the flow and
this leads to an accelerating force. The second and larger contribution arises from a
downstream density variation, caused by the distortion of the isopycnal surfaces by
the primary irrotational flow, and this leads to a drag force.
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When cylinders or spheres move with a velocity U at arbitrary orientation to the
density gradient, it is shown that they are acted on by a linear combination of lift
and drag forces. Calculations of their trajectories show that they initially slow down
or accelerate on a length scale of order ρ0/|∇ρ0| (independent of V and U ) as they
move into regions of increasing or decreasing density, but in general they turn and
ultimately move parallel to the density gradient in the direction of increasing density
gradient.

1. Introduction
Particle-laden flows, high-speed low-density jets surrounded by high-density fluid,

and turbulent flames are examples of flows where solid particles or lumps of fluid
with different densities move in complex flow fields with density gradients. In these
situations the effect of density gradients on the flows and on the pressure gradients may
be greater than those caused by buoyancy forces, and can alter the eddy structure and
entrainment into plumes (e.g. Rooney & Linden 1996) and shear layers (Hermanson
& Dimotakis 1989). Previous studies of two-phase flows have focused on how the
flow and forces on particles depend on external factors such as the gradient of the
local velocity field (Auton, Hunt & Prud’homme 1988) and on differences between the
density of the local fluid and that of the body. Current models of turbulent two-phase
flows allow for the inertial effects on the movement of eddies (or more accurately
control volumes) having a different density from their surroundings (Hunt, Perkins &
Fung 1995), but do not generally represent the effect of the local gradients of density
on the forces acting on the particles or eddies. Although the effect of a mean density
gradient on turbulence is still not fully understood, Chassaing, Harran & Joly (1994)
and Panchapakesan & Lumley (1993) have made progress in understanding the effect
of density fluctuations on the mean flow of variable-density jets.

In this paper we examine the flow generated by a body moving with constant
velocity U in a constant density gradient, ∇ρ0, with the aim of understanding and
estimating the forces and movement of eddies or particulate in flows with variable
density. We focus on flows characterized by high Reynolds and Froude numbers
where inertia forces dominate over viscous and buoyancy forces. These problems have
not previously been studied in detail, especially when the body moves parallel to the
density gradient.

The inviscid flow around a sphere moving perpendicularly to a gradient of density
(U .∇ρ0 = 0) was examined by Hawthorne & Martin (1955)† who showed that
trailing horseshoe vortices are generated by a baroclinic torque and vortex stretching.
Their flow prediction was confirmed qualitatively in wind-tunnel flow visualization
experiments. Drazin (1961) calculated the vorticity distribution around bodies moving
perpendicularly to the density gradient, but did not calculate the detailed flow around
such bodies. Neither paper included calculations of the complete velocity field nor
the forces which act on the body. The flow generated by a body moving parallel to
the density gradient has been calculated only when buoyancy effects are present. For
instance, Zvirin & Chadwick (1975) showed that when the flow is characterized by a
low Reynolds number, there is an additional drag force tending to retard the body as
it moves into more dense/lighter fluid. Warren (1960) calculated the drag force on a

† There is a sign error in (19) of Hawthorne & Martin (1955), but otherwise the interpretation
of the experiments is, we believe, correct.
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slender body moving parallel to the density gradient and to gravitational acceleration
in an inviscid Boussinesq fluid and likewise showed that a drag force acts to retard
the body as it moves into denser/lighter fluid.

Although there has been no complete solution for the inviscid velocity field as
the body moves perpendicularly to the density gradient, it is possible to use the
transformation proposed by Yih (1959) to relate the results of previous research on
the flow around bodies moving steadily in sheared flows to the flow around bodies
moving perpendicularly to the density gradient. Yih (1959) showed that the steady
velocity field v (in a frame moving with the body of speed U ) in the former problem
is equivalent to the rescaled velocity field in the latter problem through the relation,

v′ =
(
ρ/ρB

)1/2
v, (1.1)

where v′ → −(ρ0(y)/ρB)1/2U far from the body, ρ0(y) is the unperturbed density field
and ρB = ρ0(0). No linearization is involved and this transformation is valid in two
and three dimensions (see Appendix A).

We make use of the work of Taylor (1917) and Batchelor (1967) for the flow
generated by two-dimensional bodies moving in a shear, even when the shear is large.
Lighthill (1956) examined the flow generated by a sphere moving in a weak shear,
which Auton (1987) used to calculate the lift force acting on the sphere. Trailing
horseshoe vortices are generated which tend to push the sphere towards the faster-
moving fluid. A feature of these and other previous calculations of the effects of
upstream shear and/or density gradient is that the vorticity is singular on the surface
of three-dimensional bodies and on downstream-attached streamlines where the drift
function is singular. Some of the significant implications, which were not worked
out there, are examined in this paper. Wallis (1996) generalized Auton’s lift force
calculation to the case of three-dimensional bodies and verified the value of the lift
coefficient experimentally for a number of axisymmetric bodies.

Most previous studies of the effect of density gradient have focused on buoyancy
forces where gravity is aligned with ∇ρ0 or any flows where the body or flow moves
perpendicularly to the density gradient (see Turner 1973). There are a few studies of
the flow generated by a body moving parallel to the density gradient (e.g. Warren
1960; Zvirin & Chadwick 1975); however, these studies do not particularly help to
solve the problem when buoyancy effects are negligible. The aim of this paper is
to examine the inviscid incompressible flow around a rigid body moving in a weak
density gradient in the absence of buoyancy effects. The parameter describing the
strength of the unperturbed density gradient is ε = |∇ρ0|a/ρ0�1, where a is the
characteristic body length scale. In the absence of the density gradient (ε = 0), the
flow is irrotational and no force acts on the body. When 0 < ε�1, the density
gradients generate vorticity of O(ε|U |/a) through the actions of the baroclinic torque
and vortex stretching. The rotational component of the flow changes the pressure
distribution on the body surface which leads to a force, F , acting on the body. Our
aim is to calculate both the flow generated by the body and the force acting on it.

The problem we examine in this paper, of a body moving in a relatively weak
non-uniform density field, is defined mathematically in §2. The perturbation density
field caused by the irrotational component of the flow around a body travelling
through a uniform density gradient is calculated in §3. The flow around a body
moving perpendicularly or parallel to the density gradient is calculated in §4 and §5
respectively. The force acting on a body moving parallel and perpendicular to the
density gradient are evaluated using the momentum integral approach in §6. The
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total force acting on a cylinder or sphere projected into a weak density gradient is
calculated in §7 and is used to predict the trajectory of the body.

2. Problem definition
Formally, our problem is to analyse the incompressible inviscid flow around a rigid

body moving impulsively from rest at t = 0 with a constant velocity U = (U, 0, 0)
into a region denoted by D, where initially the flow is at rest and the density field,
ρ0(x), has a uniform gradient, ∇ρ0. The solutions to the velocity and density fields
u(x, t), ρ(x, t) satisfy the incompressibility condition

Dρ

Dt
= 0, (2.1a)

the continuity equation

∇ · u = 0, (2.1b)

and the conservation of momentum

ρ
Du

Dt
= −∇p. (2.1c)

Clearly, the Boussinesq approximation, where density changes in the inertia term are
negligible, is inapplicable. In order to define a suitable coordinate system, xB is taken
as a reference point in the body which is initially at x0, as shown in figure 1. Then
for t > 0, the position of the body is xB(t) = x0 +U t. We introduce the coordinate x′

relative to the body, x = xB(t) + x′, and a new velocity field v = u−U relative to the
body. Now the velocity and density fields are subject to the boundary conditions: far
upstream of the body, as x′ ·U →∞,

u→ 0 or v → −U , (2.2)

and

ρ→ ρ0(x). (2.3)

On the surface SB of a rigid body (defined as the points x′S which are the solutions
of fS (x) = 0), the kinematic condition satisfied by the velocity field is

v · n̂ = 0, (2.4)

where n̂ = ∇fS/|∇fS | is directed into the body.
The aim of this paper is to calculate the flow generated by the body and the force

F (defined in §6) which acts on the body. We consider a body moving in a fluid with a
constant density gradient, and write the velocity and density fields as reference fields
and perturbations, namely

v(x′, t) = v1(x
′) + v2(x

′, t), (2.5)

ρ(x′, t) = ρ1(x
′, t) + ρ2(x

′, t), (2.6)

and ρ0(x) = ρ0(0) + (x− x0) · ∇ρ0, where w.l.o.g. x0 = 0. (2.7)

Here the velocity field, v1, represents the irrotational flow in the absence of a density
gradient, and ρ1 represents the density field perturbed by the irrotational flow. The
problem is unsteady because x′ depends on time. However, we shall demonstrate that
in a moving frame to leading order there is a steady solution defined in a region
DM ⊂ D. The excluded inner region DI is shown to be much smaller than DM . We
will show that the residual terms, v2 and ρ2, are relatively small in DM .
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Figure 1. Schematic defining the coordinate system is shown in (a). The inner region DI and main
region DM are sketched in (b).

In the absence of a density gradient, from (2.1c) the fluid is irrotational and steady
in the frame moving with the body, i.e.

v1(x, t) = v1(x
′) = ∇φ1 for t > 0, (2.8)

where from (2.1b), (2.2), (2.3) the velocity potential, φ1, satisfies Laplace’s equation
(∇2φ1 = 0), the boundary condition

∇φ1 · n̂ = 0, on SB (2.9)

and the far field condition ∇φ1 → −U as |x′| → ∞.
In the presence of a density gradient, a secondary velocity field v2 is generated

which satisfies v2 · n̂ = 0 on SB . By definition, the density field, ρ1(x, t), is determined
by v1, so from (2.1c)

∂ρ1

∂t
+ v1 · ∇ρ1 = 0, (2.10)

and ρ1 is subject to the boundary condition that the perturbed density gradient tends
to the undisturbed value ∇ρ0 far upstream of body, namely as x′ ·U →∞
ρ1(x, t)→ ρ0(0) + x · ∇ρ0 = ρB + x′ · ∇ρ0 and thence (∂∇ρ1/∂t)x′=const → 0, (2.11a)

where ρB = ρ0(0) + U t · ∇ρ0 is the density at xB in the absence of the body. Since
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v1(x
′) is independent of t, (2.11) becomes in the frame of the body

∇(v1 · ∇ρ1) = 0 or v1 · ∇ρ1 = −U · ∇ρ0. (2.11b)

The perturbation component, ρ2, must satisfy

Dρ2

Dt
+ v2 · ∇ρ1 = 0, (2.12)

subject to the boundary condition ρ2 → 0 as x′.U → ∞. Since v1 is irrotational the
vorticity, ∇× v = ∇× v2 = ω2, is generated by the action of the baroclinic torque on
the flow. The vorticity equation is obtained by taking the curl of (2.1a):

D(ρω2)

Dt
=

Dv1

Dt
×∇ρ1 +(ρω2 · ∇)v1 +

Dv2

Dt
×∇ρ1 +

Dv1

Dt
×∇ρ2 +

Dv2

Dt
×∇ρ2 +(ρω2 · ∇)v2.

(2.13)

When the body moves perpendicularly to the density gradient U · ∇ρ0 = 0, the
streamwise component of vorticity can be calculated exactly from the above equation
(Scorer 1978), to give

D

Dt

(
ω2 · ŝ
v

)
=

2κ

ρv
∇
(

1
2
ρ|U |2

)
· b̂ (2.14)

where 1/κ is the radius of curvature of the streamlines. The local unit vectors b̂, ŝ and
n̂ are respectively binormal, tangential and normal to the streamlines (towards the

centre of curvature) and satisfy the relationship ŝ × n̂ = b̂. Linearizing (2.15) shows
that the streamwise component of vorticity is

D

Dt

(
ω2 · ŝ
v1

)
=

1

ρv3
1

∂v2
1

∂n

∂( 1
2
ρ1|U |2)
∂b

. (2.15)

This equation implies that for three-dimensional bodies (where ∂/∂b 6= 0), the stream-
wise component of vorticity persists far downstream of the body – this is described
as ‘trailing’ vorticity.

When the body moves perpendicularly to the density gradient, (U · ∇ρ0 = 0), the
density field ρ1(x

′) is steady because the isopycnal surfaces are not permanently
displaced forward and is weak in the sense that its gradient is O(|∇ρ0|). However,
in three-dimensional flows, vortex stretching generates a vorticity field which grows
without limit within a thin layer located on the surface of the body SB and sur-
rounding the attached downstream streamlines – this layer is termed region DI (see
figure 1b). Despite the singularity of the vorticity distribution, the velocity field is
steady everywhere in D, i.e. both in the inner region DI and in the main region DM .
The perturbed velocity field is |v2| = O(|U |ε) and so from (2.13) the density field
ρ2 = O(ρ0ε

2). The formal link between the flow generated by a body moving perpen-
dicularly to the density gradient and parallel to a shear flow is explained in Appendix
A. We note that both have this feature of a singularity in vorticity in region DI .

When the body moves parallel to the density gradient, U × ∇ρ0 = 0, the den-
sity field is unsteady in the body frame of reference because isopycnal surfaces are
permanently displaced forward (see figure 2). These surfaces ‘pile-up’ on the body
and are stretched as they are convected downstream resulting in a density gradient
which is singular on the surface of the body and attached streamline(s). The gradient
is singular because the isopycnal surfaces are passively advected close to a stagna-
tion point. When the bodies do not possess stagnation points (e.g. bodies which are
cusped at the points of attached streamlines) and/or when molecular diffusion is
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Figure 2. Schematic of the distortion of isopycnal surfaces by a body moving in a variable-density
flow, showing the different length scales of the body and density gradient.

present, the density gradients are not singular and region DI is not present. The
density gradient is unsteady within a thin region δ = O(a exp(−|U |t/a)), which de-
creases in time – this width defines the region DI , and when |U |t/a�1 the density
gradient ∇ρ1 is steady (from 2.12a) in DM . In region DM , where |∇ρ1|/ρ0�1/a,
|v2|� |v1 +U |, |∇ρ2|� |∇ρ1|, the vorticity is small compared to the irrotational strain
and is steady. However, in the thin region DI adjacent to the surface of the body
and the attached streamline(s) which do not come from upstream, the density gra-
dients are large enough that the perturbation velocity |v2| is comparable to |v1 +U |.
Because ρ1 and v2 have weak singularities in DI , the mass and volume flux av-
eraged over the region are small. The associated nonlinear unsteady effects are
neglected from our analysis because they are confined to a narrow region, DI ,
whose effect on the overall flow and the force on the body is negligible to leading
order.

From (2.14), it is clear that the existence of trailing vorticity induces a secondary
velocity field v2 which decays more slowly with distance from the body than (v1 +U ).
As a result, when r/a = O(ε−1), the velocity gradients of the secondary flow (v2)
dominate the strain field far from the body because they are not small compared with
those of the primary flow. Therefore the linearized solution is not valid for r > a/ε.
However, when we evaluate the force on the body, we choose a control surface which
is smaller than a/ε, where the ‘near field’ solution (v1 +U ) dominates v2.

As ε→ 0, the vorticity equation (2.14) tends to

D′(ρ1ω2)

D′t
=

D′v1

D′t
× ∇ρ1 + (ρ1ω2 · ∇)v1, (2.16)

where D′/D′t = ∂/∂t+ v1.∇ and the density field, ρ1, satisfies (2.12b). The secondary
velocity field can be written as, v2 = vr2 + ∇φ2, where vr2 and ∇φ2 are respectively the
rotational and irrotational components of the secondary flow. Formally we seek to
solve for the unknowns vr2 and ρ1 subject to (2.17), (2.12b), to the kinematic conditions,

∇× vr2 = ω2, ∇2φ2 = 0, (2.17)
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and to the boundary conditions

(vr2 + ∇φ2) · n = 0 on SB, (2.18)

(vr2 + ∇φ2)→ 0 as x′ ·U →∞, (2.19)

and ρ1(x
′)→ ρ0(x

′) as x′ ·U →∞. (2.20)

We proceed by first calculating the perturbed density field, ρ1(x
′). Throughout this

paper, the body moves parallel to the x-axis, soU = (U, 0, 0), and the ‘base streamlines’
are those of the unperturbed irrotational flow.

3. Density field perturbed by the irrotational flow, ρ1

The perturbed density field, ρ1, satisfying (2.12b) subject to the boundary condition
(2.12a), can be calculated exactly by finding the mapping between the Lagrangian
and Eulerian frames of reference. Since we assume that the unperturbed density field
is linear in x, after the fluid particles have been displaced to points (X,Y ), the density
field can be written in terms of the Lagrangian coordinates

ρ0(X,Y ) = ρ0(0) +X
dρ0

dx
+ Y

dρ0

dy
, (3.1)

where X,Y are the Lagrangian coordinates. Figure 3 shows a comparison between the
density field in the Lagrangian and Eulerian frames of reference for a cylinder. The
dashed lines show the isopycnal surfaces associated with a vertical density gradient,
and the full lines are associated with a horizontal density gradient. The Lagrangian
and Eulerian coordinates (x′, y′) are related by

(X,Y ) = (x′, y′)−
∫ t

0

(v1,x, v1,y)dt. (3.2)

The solution to (3.1) is

ρ1(x
′, y′, z′) = ρ0(X(x′, y′, z′), Y (x′, y′, z′)) (3.3)

(Hunter 1983, p. 43). When the flow is irrotational, v1 = ∇φ1, and v1 + U → 0
as |x′| → ∞; also Eames, Belcher & Hunt (1994) showed that the streamwise (or
x-direction) displacement of a fluid particle is∫ t

0

v1,xdt = −φ1

U
− x′ +Xd −Ut,

where we define Darwin’s ‘displacement’ drift function, Xd, to be

Xd(x
′) =

∫ t

0

|∇φ1 +U |2
U

dt.

Therefore the horizontal Lagrangian coordinate is

X(x′) = 2x′ +
φ1

U
−Xd +Ut. (3.4)

Since Darwin’s drift function Xd depends on the velocity perturbation, it increases
along a streamline, and decays rapidly from the centreline. Downstream, Darwin’s
displacement function, limx′→−∞Xd(x

′) describes the permanent displacement of a
material surface by a body for which asymptotic expressions have been calculate for
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Figure 3. The relationship between the Lagrangian and Eulerian frames of reference, using for
illustration the flow around a cylinder of radius a. The streamlines describing the flow around the
cylinder are plotted in (a). The isopycnal surfaces are deformed by the flow around the cylinder
and plotted in (b). The surfaces initially parallel to the x-axis are deflected around the body and
coincide with the streamlines. The isopycnal surfaces initially parallel to the y-axis accumulate on
the surface of the body.

a sphere (Lighthill 1956) and cylinder (Darwin 1953): e.g. for a cylinder

lim
x′→−∞

Xd(x
′) ∼


πa4

2y3
, y�a,

a

(
log

(
8a

y

)
− 2

)
, y�a.

The downstream displacement is singular close to the centreline because there the
fluid has passed close to the stagnation points. This singularity is not present when
the bodies are cusped at the attached streamlines. The volume of fluid permanently
displaced forward by the passage of a body is the integral

∫ ∞
−∞
∫ ∞
−∞ limx′→−∞Xddy

′dz′,
which is equal to CMV, where CM is the added-mass coefficient of the body (Darwin
1953). The added-mass coefficient is a geometrical factor which depends on the
relative orientation of the body to the flow and is defined by

CMV =
UTαU

U2
, (3.5)

where α is the added-mass tensor (Batchelor 1967, p. 403). The added-mass coefficients
for a sphere (CM = 1/2) and cylinder (CM = 1) are independent of the relative
orientation to the flow because these bodies have point symmetry.
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To calculate the vorticity generated by the baroclinic torque, we use Lighthill’s
(1956) ‘time’ drift function, τ, defined by

τ =

∫ φ1

−∞

dφ1

v2
1

. (3.6)

Lighthill’s drift function describes the time taken for a fluid particle to be advected
between two points on a streamline and is related to the horizontal displacement, X,
through

Uτ =

∫ φ1

−∞

U

v2
1

dφ1 =

∫ φ1

−∞

|∇φ1 +U |2 − 2v1,xU − v2
1)

Uv2
1

dφ1 = Xd−2x′ − φ1

U
= Ut−X(x′).

(3.7)

The cross-stream Lagrangian coordinate, Y , is constant along a streamline and only
depends on the height of the streamline from the plane y = 0, far up/downstream of
the body. Thus Y is determined by the streamfunction: e.g. in two-dimensional flow,

Y = −ψ1/U, (3.8)

where ψ1 is the streamfunction corresponding to the velocity potential φ1. In a three-
dimensional axisymmetric flow the streamlines lie in a fixed plane z/y = cos α and
the height of the streamline from the plane y = 0 far up/downstream of the body is

Y = (−2ψ1/U)1/2 cos α, (3.9)

where the axisymmetric flow is characterised by ψ1, the Stokes streamfunction. Com-
bining (3.4), (3.8) and (3.9) shows that the density field caused by the movement of a
two-dimensional body is

ρ1(x
′) = ρB +

(
2x′ − φ1

U
−Xd

)
dρ0

dx
− ψ1

U

dρ0

dy
, (3.10)

and of an axisymmetric body is

ρ1(x
′) = ρB +

(
2x′ − φ1

U
−Xd

)
dρ0

dx
+

(
−2ψ1

U

)1/2
dρ0

dy
cos α, (3.11)

where ρB = ρ0(0) +U t · ∇ρ0.

4. Flow around a body moving perpendicularly to the density gradient,
U · ∇ρ0 = 0

4.1. Two-dimensional analysis

The vorticity field can be calculated from (2.17), in terms of the Lagrangian coordi-
nates

ω2(x
′) · ẑ = − 1

2Uρ0(Y )

dρ0(Y )

dy

(
v2

1 −U2
)
. (4.1)

This solution (Drazin 1961) is valid for any density field ρ0(Y ), but the magnitude of
dρ0/dy is restricted because the secondary vorticity is assumed to be weak (i.e. ε�1).
The vorticity field is localized, and decays away from the body. The flow is calculated
by writing the secondary velocity vr2 as vr2 = ∇× ψr2ẑ and solving (2.18) and (4.1).

The primary flow is dipolar in the far field so that

φ1(x
′) = −Ur cos θ + µU

cos θ

r
as r/µ1/2 →∞, (4.2)
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Figure 4. Streamlines describing the flow around a cylinder in the fluid frame of reference. The
cylinder is moving perpendicularly to the density gradient and the density gradient is characterized
by ε = 1. A large density gradient is taken so that the perturbation to the streamlines is large and
can be see. The direction of the force on the cylinder, F, is shown.

where the dipole strength is µ = (CM + 1)V/2π (Taylor 1928). Far from the body,
the secondary flow calculated from (4.1) is

vr2(x
′) = −Uµ

ρB

dρ0

dy

(
sin 2θ

2r
r̂ − µ

2r3
θ̂

)
for 1� r/µ1/2�1/ε. (4.3)

The secondary flow consists of a circulatory and a rotational quadrupole term. In
general, the flow is dominated by the rotational quadrupole term which tends to speed
up the fluid above the body and decelerate the fluid beneath it, resulting in a pressure
drop across the flow and a lift force which pushes the body towards the denser fluid.
The perturbation velocity field is symmetric in the sense that its direction is reversed
when the relative velocity between the body and fluid changes, so that the lift force
is in the same direction when the body is travelling in the opposite direction.

The primary flow around a cylinder is described exactly by (4.2) with µ = a2, and
the secondary flow may be written in terms of the streamfunction

ψr2(r, θ) =
Ua2

4ρB

dρ0

dy

(
cos 2θ +

a2

2r2

)
. (4.4)

The irrotational component, φ2, satisfying the boundary condition (2.19) is

φ2 =
Γ

2π
θ − Ua2

4ρB

dρ0

dy

sin 2θ

r2
. (4.5)

The strength of the line vortex, Γ , is indeterminate even though the flow it induces
satisfies the kinematic condition on the surface of the cylinder and in the far field.
However, an infinite amount of kinetic energy must be introduced to generate the
flow induced by a line vortex; this is an unphysical assumption, so that Γ = 0.
This could also be derived from the initial value problem for t > 0. Therefore, the
streamfunction for the velocity field, v, around the cylinder is

ψ = −Ur
(

1− a2

r2

)
sin θ +

Ua2

4ρB

dρ0

dy

{(
1− a2

r2

)
cos 2θ +

a2

2r2

}
. (4.6)

The last term gives the effective circulation around the body which induces the lift
force. Figure 4 shows the streamlines for the full velocity field (i.e. v+U ) around the
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Figure 5. Schematic the flow past an axisymmetric body showing (a) the notation and the downwash
produced by the baroclinic, non-buoyancy effect, and (b) how vorticity is generated upstream of the
obstacle by the baroclinic torque produced by the unperturbed density field and how the vorticity
is then distorted and amplified as it is advected around the body.

cylinder in a fixed frame of reference when dρ0/dy > 0. Note that the streamfunction
describing the flow past a cylinder (4.6) is only valid in the region r�a/ε, where
ε = a|dρ0/dy|/ρ0�1.

However, for the specific case when the unperturbed density field has a quadratic de-
pendence on y, so that ρ0(1+εy/2a)2 (where ε is not necessarily small), the streamfunc-

tion can be derived for the flow everywhere, namely ψ = −2(Ua/ε)
(
1− ψsε/Ua

)1/2
,

where ψs is the streamfunction describing the inviscid flow around a two-dimensional
body fixed in a constant shear εU/2a. For the specific case of a cylinder (Batchelor
1967, p. 543)

ψs = −Ur
(

1− a2

r2

)
sin θ +

Uaε

8

(
−a

2

r2
cos 2θ − 2

r2

a2
sin2 θ

)
.

4.2. Three-dimensional analysis for axisymmetric bodies

A significant difference between two- and three-dimensional flows is that the vorticity,
which is first generated by a baroclinic torque, is then stretched and rotated by the
(ω2 · ∇)v1, (ω2 · ∇)v2 terms in (2.14). In particular, when U · ∇ρ0 = 0, these terms
generate a streamwise component of vorticity (see figure 5). The trailing vorticity may
be calculated from the linearized vorticity equation (2.16):

ω2(x
′) · ŝ =

v1

2ρB

dρ0

dy
sin α

∫ s

−∞

U2

v4
1

∂v2
1

∂n

(−2ψ1/U)1/2

R
ds+ O

(
Uε2/a

)
. (4.7)
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The streamwise component of vorticity is (see Appendix B)

ω2(x
′) · ŝ = − U

2ρB

dρ0

dy
sin α

(−2ψ1/U)1/2

R

(
∂Xd

∂n
− 2v1,R

v1

)
. (4.8)

As to be expected from Yih’s (1959) result, this is identical to Lighthill’s (1953,
equation 52) expression for the vorticity distribution downstream of a body in a
sheared flow. The trailing vorticity far downstream (x′ → −∞) is

ω2 · ŝ = − U

2ρB

dρ0

dy
sin α lim

x′→∞

∂Xd

∂n
. (4.9)

Note that the vorticity is singular on the surface on the body and downstream-
attached streamlines but the velocity field is finite everywhere. On the wake streamline
(U · x′ → −∞), the secondary flow, vr2, satisfying (2.18) and (4.9) is (see Auton 1987,
equation 6.6)

vr2,y(R, α)

(Udρ0/dy)/2ρB
= −sin 2α

R2

∫ R

0

XdRdR − 1
2
(1− sin 2α)Xd (4.10)

vr2,z(R, α)

(Udρ0/dy)/2ρB
= −cos 2α

R2

∫ R

0

XdRdR + 1
2

cos 2αXd, (4.11)

where R = (y2 + x2)1/2. The flow far from the centreline R/a�1 is (Lighthill 1956,
corrigendum)

vr2(x
′) =

U

ρB

dρ0

dy
sin α

CMV
8π
∇
(

1

R

(
1− x′

r

))
. (4.12)

Equations (4.10), (4.11) and (4.12) are required to estimate the force on the body
(Auton 1987). Figure 5 shows that the trailing vorticity gives a downthrust to the flow
resulting in a lift force which drives the body towards the denser fluid. It also explains
how the vorticity is generated by the finite baroclinic torque and is then amplified to
a singular extent by the flow around the bluff body.

5. Flow when the body moves parallel to the density gradient, U × ∇ρ0 = 0

5.1. Two-dimensional analysis

In a two-dimensional flow, where there is no vortex stretching (ω · ∇)v = 0, the
vorticity equation (2.14) reduces to

D′(ρ1ω2 · ẑ)
D′t

= ẑ · D
′v1

D′t
× ∇ρ1. (5.1)

The baroclinic torque is calculated by using Lighthill’s drift function, τ, where ∇τ =
−v1(dτ/dψ1)

1/2n̂+ (1/v1)
1/2ŝ, and the identity

−ẑ · ∇( 1
2
v2

1)× ∇
(
Uτ

dρ0

dx

)
= −v1

dρ0

dx

(
−∂τ
∂n

∂v1

∂s
+
∂τ

∂s

∂v1

∂n

)

= −v1

dρ0

dx

(
∂( 1

2
v2

1)

∂s

dτ

dψ1

+
1

v1

∂v1

∂n

)
= v1

∂

∂s

(
1

2
v1

dρ0

dx

∂τ

∂n

)
.
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By integrating the baroclinic torque along the base streamlines, it follows that the
vorticity is

ω2(x
′) · ẑ =

v1

2ρ1

dρ0

dx

∂τ

∂n
=

v1

2ρ1

dρ0

dx

(
∂Xd

∂n
− 2v1,y

v1

)
=

1

ρ1

dρ0

dx

(
1

2
v1

∂Xd

∂n
− v1,y

)
. (5.2)

From (5.2) we see that to leading order the vorticity field is steady to O(ε) but
increases/decreases at O(ε2) depending on whether the local density is decreas-
ing/increasing. Close to the attached streamline and to the surface SB , the vorticity is
O(εU/n) and singular.

The rotational component of the secondary flow is calculated by writing vr2(x
′) =

vr2,a(x
′) + vr2,b(x

′), where vr2,a, v
r
2,b are respectively the velocity fields associated with the

downstream vorticity distribution and a localized vorticity distribution:

ẑ · ∇× vr2,a =
v1

2ρ1

dρ0

dx

∂Xd

∂n
, ẑ · ∇× vr2,b(x′) = − 1

ρ1

dρ0

dx
v1,y . (5.3)

We determine the velocity field within a distance a/ε. In the far field, vr2,a(x
′) is

determined from the vorticity distribution

ω∞(x′) =


U

2ρB

dρ0

dx
lim

x′→−∞

∂Xd

∂y
, x′ < 0,

0, x′ > 0.
(5.4)

Because
∫ ∫

(ω∞ − ẑ · ∇ × vr2,a)dxdy → 0 as the region of integration increases, the
rotational component of the flow, vr2,a, is solely determined by ω∞ in the far field.
Using the Biot-Savart law, it can be shown that far from the centreline, the secondary
flow is

vr2,a =

∫ ∞
0

∫ ∞
−∞
ω∞ẑ ×

{
(x− x̂, y − ŷ)

(x− x̂)2 + (y − ŷ)2
− (x− x̂, y + ŷ)

(x− x̂)2 + (y + ŷ)2

}
dx̂dŷ

=
x′

ρB |x′|2
dρ0

dx

∫ ∞
0

∂Xd

∂ŷ
ŷdŷ = −CMVUx

′

ρB |x′|2
dρ0

dx
.

The above equation describes a flow consisting of a sink of strength CMV(U · ∇ρ0)/
2ρB , located at the origin. The contribution to the flow from vr2,b is (from (5.2))

vr2,b = − (CM + 1)V
4πρB

dρ0

dx
cos 2θ

x′

|x′|2 . (5.5)

From (5.3) the velocity field downstream of the body and near the centreline is

lim
x′→−∞

vr2,x(x, y) = − U

2ρB

dρ0

dx
Xd, (y 6= 0) (5.6)

which describes a localized jet-like flow along the centreline. Close to the centreline
the secondary flow is vr2,x = O(Uε log(a/n)), where n is the distance from the attached
streamline or body surface. As the body moves into denser fluid, the jet drives a flow
in the opposite direction to U and the far-field flow is characterized by a sink located
at the origin. The direction of the jet and sink is reversed when the body moves into
less-dense fluid.

The pressure field is calculated from the steady Eulers’ equation:

∂

∂s

(
p+ 1

2
ρ(v2 −U2)

)
=

1

2

(
v − U2

v

)
v · ∇ρ. (5.7)
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The barotropic Bernoulli’s equation is clearly not satisfied because the density along
the streamline is not a function of p. The pressure variation along the streamlines is
obtained by integrating (5.7) and (2.12c), to gives

p = p0 + 1
2
ρ(v2 −U2) + 1

2
U

dρ0

dx
(UXd − 2φ1) + O(ρBU

2ε2). (5.8)

The pressure difference between two points upstream and downstream of the body is

[p]
−x′/a� 1

x′/a� 1
= ρ0U[v2,x]

−x′/a� 1

x′/a� 1
+

1

2

dρ0

dx
U2[Xd]

−x′/a� 1

x′/a� 1
= O(ρBU

2ε2), (5.9)

where we have used (5.6) to evaluate v2,x far downstream.

5.2. Three-dimensional analysis for axisymmetric flow

When the flow is axisymmetric, the only non-zero component of vorticity is in the
azimuthal direction, so that the vorticity field may be regarded as an assemblage of
vortex rings. As a vortex ring is advected past the body it is stretched, increasing
the vorticity of the ring but conserving circulation. The generation of vorticity by
stretching is ϕ̂ · (ω · ∇)v = vRω · ϕ̂/R, where ϕ̂ is the unit vector in the azimuthal
direction and vR is the velocity component perpendicular to the centreline. The
vorticity generation is described by

D′

D′t

(
ρ1ω2 · ϕ̂
R

)
=
ϕ̂

R
·D
′v1

D′t
× ∇ρ1. (5.10)

The right-hand-side of (5.10) can be manipulated as

−dρ0

dx

ϕ̂

R
· D

′v1

D′t
× ∇τ =

dρ0

dx

v1

R

(
∂τ

∂n

∂v1

∂s
− ∂τ

∂s

∂v1

∂n

)
=

dρ0

dx

v1

R

(
v1R

U(−2ψ1/U)1/2

∂v1

∂s

dτ

d(−2ψ1/U)1/2
− 1

v1

∂v1

∂n

)
=

dρ0

dx

v1

U(−2ψ1/U)1/2

∂

∂s

(
1

2
v2

1

dτ

d(−2ψ1/U)1/2

)

−dρ0

dx

1
2
v3

1

U(−2ψ1/U)1/2

∂

∂s

(
dτ

d(−2ψ1/U)1/2

)
− dρ0

dx

1

R

∂v1

∂n

=
dρ0

dx

v1

(−2ψ1/U)1/2

∂

∂s

(
1

2
v2

1

dτ

d(−2ψ1/U)1/2

)
.

Integrating the above equation along the base flow streamlines shows that the vorticity
distribution is

ω2(x
′) · ϕ̂ =

1

ρ1

dρ0

dx

(
1

2
v1

∂Xd

∂n
− v1,R

)
. (5.11)

Qualitatively the secondary flow generated by three-dimensional bodies is identical to
that described in §5.1 and consists of a sink strength CMV(U · ∇ρ0)/2ρB located at
the origin, and a downstream ‘jet’ away from the body. The sign of the vorticity and
direction of the wake flow change when dρ0/dx < 0. The analysis for the pressure
variation along the unperturbed streamlines is identical to the two-dimensional flow,
so that the pressure drop across the two ends of a streamline is O(ρBε

2U2). Figure 6
shows schematic diagram of the flow and vortex dynamics.
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Figure 6. Flow around a two- or three-dimensional axisymmetric body moving parallel to the
density gradient: (a) shows the strength of the sink at the origin (CMV(U ·∇ρ0)/2ρB) and the
downstream distribution of vorticity which gives rise to a flux of fluid away from the body, and (b)
shows how the vorticity is generated immediately downstream of the body by the baroclinic couple.

Figure 7 shows the variation of the baroclinic torque along a streamline and in
particular shows the separate contribution to the torque from the density gradient
parallel and perpendicular to the base streamline. The vorticity distribution along the
streamline is also shown.

6. Force on a body moving in a uniform density gradient
The force on a body moving in an inviscid fluid results from the pressure variation

over the body surface, SB , and is

F =

∫
SB

pn̂dS (6.1)

(Batchelor 1967, p. 138). The momentum-integral theorem is applied to the steady flow
in a control volume V∞ surrounding the body. The force on the body is independent
of the shape of the control volume and may be chosen arbitrarily – in two dimensions
we choose rectangle of length L and width W , and in three dimensions, a cylinder
of radius W , where 1�W/a�L/a�1/ε. Within the region DM , the secondary flow,
v2, is a valid approximation to the flow. Using Gauss’s Theorem and the kinematic
condition of the surface of the body, (6.1) can be manipulated to show

F = −
∫
A∪S

pn̂dS −
∫
A∪S

ρ(v · n̂)vdS +

∫
V∞

(v · ∇ρ)vdV , (6.2)

where A and S are respectively the end and the curved sides to the control volume.
Note that the density field ρ is non-uniform in (6.2). The third term on the right-
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Figure 7. The contributions to dω2/dt from components of the baroclinic torque arising from the
density gradient parallel and perpendicular to the streamlines along a single streamline Y = 0.1a,
using for illustration the flow around a cylinder. The streamline corresponding to Y = 0.1a is
plotted in the inset. The variation of the vorticity along the streamline is shown as the full line.

hand-side of (6.2) is zero when U · ∇ρ0 = 0, but it makes an important contribution
when the body moves parallel to the density gradient.

6.1. Force on a body moving perpendicularly to the density gradient, U · ∇ρ0 = 0

The force on a body moving perpendicularly to a density gradient can be deduced
from the force on a body moving in a shear defined as dU∞/dy. Batchelor (1967)
showed that the lift coefficient describing the lift force acting on a two-dimensional
body is

F = ρBCLV
dU2
∞

dy
ŷ, (6.3)

where CL = (CM + 1)/2. Auton (1987) calculated the lift force on a sphere fixed in a
shear, and Wallis (1996) generalized these results to bodies axisymmetric about the
direction of relative motion and showed that they are subject to the lift force (6.3),
where the lift coefficient is CL = CM/2. In both cases the lift force tends to push the
bodies towards the faster flow. Bernoulli’s equation is satisfied along the streamline
when the body moves perpendicularly to a density gradient or is fixed in a shear and
the pressure fields in both flows are identical, although the velocity fields differ. Thus
the force on a two-dimensional or axisymmetric body moving perpendicularly to a
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density gradient is given by (6.3) for a shear where dU∞/dy = U(dρ0/dy)/2ρB , i.e.

F = CLVU2 dρ0

dy
ŷ. (6.4)

The total lift force acting on a body moving in a shear and perpendicular to a
density gradient is a linear combination of (6.3) and (6.4). The expression (6.4) for the
force for two- and three-dimensional axisymmetric bodies can also be derived using
the expressions for the far-field flow, because only certain terms in the expansion
contribute to F . The force was verified directly for the case of cylinder by integrating
the pressure variation over the body surface.

When U · ∇ρ0 = 0, the lift force can be written vectorially as

F = CLV(U × ∇ρ0)×U , (6.5)

where the lift coefficient CL is respectively (CM + 1)/2 or CM/2 for two- or three-
dimensional bodies which are axisymmetric about the direction of motion. The
direction of the lift force is unchanged when U is reversed.

6.2. Force on a body moving parallel to density gradient, U × ∇ρ0 = 0

The force on a two- or three-dimensional axisymmetric body moving parallel to the
density gradient is calculated in Appendix C, where we show that

F = −CMVUU
dρ0

dx
+ ρBU

∫
A

vr2 · n̂ dS. (6.6)

Unlike barotropic flows, with baroclinic effects the drag can no longer be interpreted
simply in terms of the momentum deficit of the flow downstream of the body. The first
term describes the pressure drag and the momentum deficit caused by the distortion of
the density field by the irrotational component of the flow. The second term describes
the momentum deficit due to the downstream velocity perturbation caused by the
rotational component of the flow, as in barotropic flows.

The downstream volume flux of the perturbed flow for a two- or three-dimensional
body axisymmetric about U is calculated from (5.7) and Darwin’s proposition:∫

A

vr2 · n̂dS =
1

2ρB
CMVU

dρ0

dx
. (6.7)

As a result, from (6.6) and (6.7), we see that the changes in the momentum flux,
because it is positive, exert a thrust on the body, as the body moves into denser fluid,
whereas the density variation effectively exerts a drag on the body which is greater
than the thrust. When U × ∇ρ0 = 0, the total force can be written vectorially as

F = −CDV(U · ∇ρ0)U , (6.8)

where the drag coefficient CD = CM/2 for axisymmetric and two-dimensional bodies.
The direction of the drag force is reversed when the body moves into lighter fluid.

6.3. Force on a body moving with a constant velocity U
in a uniform density gradient, ∇ρ0

An axisymmetric body moving parallel to a density gradient generates only a vor-
ticity component binormal to the base streamlines. In contrast, such a body moving
perpendicularly to the density gradient generates components of vorticity normal,
tangential and binormal to the base streamlines. The vorticity components parallel
and normal to the streamlines are O(|U × ∇ρ0|/ρ0), but the binormal component
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consists of a linear combination of a localized contribution O(|U × ∇ρ0|/ρ0) and a
non-localized contribution O(U · ∇ρ0)/ρ0. Since the vorticity distribution is a linear
combination of the effects due to a body moving parallel and perpendicularly to ∇ρ0,
the secondary flow and hence the force acting on a body axisymmetric about U is

F = −CDV(U · ∇ρ0)U + CLV(U × ∇ρ0)×U , (6.9)

where CL, CD > 0 are respectively lift and drag coefficients.
The vorticity field generated by a two-dimensional body moving with a constant

velocity U at an arbitrary angle to a uniform density gradient ∇ρ0 is a linear
combination of the vorticity generated by moving parallel or perpendicularly to the
density field because there is no vortex stretching. It follows that the total force on a
two-dimensional body is also described by (6.9).

6.4. Force on a body moving unsteadily in a uniform density field

We have established that a body moving steadily in a weak density gradient is subject
to the force described by (6.9) for time |U |t/a�1. The flow past the body is quasi-
steady providing the time scale for velocity variations, |U |/|U̇ |, is much larger than the
advective time scale, a/|U |. This is clearly satisfied by (6.9) because a|U̇ |/U2 = O(ε),
so that the force on a body moving unsteadily in a uniform density gradient is also
described by (6.9).

The lift and drag coefficients are functions of the added-mass coefficient CM , which
depends on the orientation of the body (3.5), so that the lift and drag coefficients may
be unsteady when U/|U | is unsteady. For the specific case of a cylinder and sphere,
the lift and drag coefficients are independent of orientation.

7. The movement of a cylinder or sphere in a simple non-uniform density
field

From the general expression of the force on a body (6.9), we can now calculate the
trajectory of a cylinder or sphere located at (x(t), y(t)) moving at a velocity (ux, uy) in
the (x, y)-plane in an inviscid fluid with a positive density gradient (dρ0/dy)ŷ. When
the flow has a mean velocity U , the velocity of the body should be expressed relative
to U in order to interpret the following results.

The body is projected with an initial velocity (u(p)
x , u

(p)
y ) from the origin. The

equations of motion for a point-symmetric body of density ρb acted upon by a
combination of the added-mass force, −ρ0(y)CMVdU/dt, and the fluid force (6.9), is

dux
dt

= −(C̃D + C̃L)uxuy/a, (7.1)

duy
dt

= (C̃Lu
2
x − C̃Du

2
y)/a, (7.2)

where C̃D, C̃L = a(CD, CL)|∇ρ0|/(ρb + ρ0(y)CM). These coefficients (which are small)
can be assumed to be constants providing the normal displacement is less than the
distance over which the density changes significantly, i.e. y(t)(dρ0/dy)/ρ0�1. Since
the forces are weak, the curvature of the trajectory is large and (7.1), (7.2) are
valid. Equation (7.2) shows that all bodies projected horizontally (i.e. u(p)

y �u(p)
x ) are

subject to a lift force, tending to push them towards the denser fluid, even if they
are initially projected towards the lighter fluid and are initially accelerated. Figure 8
shows examples of trajectories of particles projected at an angle α to the horizontal.
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Figure 8. Typical trajectories of bodies with density ρp, which are projected in a fluid of density
ρ0 and gradient ∇ρ0, with unit speed at an angle α to the x-axis. The normalized drag and lift
coefficients are chosen as C̃D = 1/10a, C̃L = 1/10a, where C̃D, C̃L = (CD, CL)|∇ρ0|/(ρ0CM +ρb). The
time difference increment between the positions is a/10U; α = −π/5, −π/10, 0, π/10.

Equations (7.1), (7.2) also show that as uy increases, ux decreases until at t = tmax,

C̃Lu
2
x = C̃Du

2
y . Thereafter, for t� tmax, uy decreases slowly (uy ∼ a/(C̃Dt)), while ux

decreases more rapidly as ux ∼ U(Ut/a)−2 for both cylinders and spheres.
Thus whatever the initial direction of the trajectories (other than exactly antiparallel

to the density gradient), the body eventually travels parallel to the density gradient,
and the velocity decreases over a distance a/C̃D . For bodies projected at a steep angle α
greater than tan−1(C̃D/C̃L)1/2, uy decreases immediately (for t > 0) and the drag force
inhibits motion against the density gradient. A body projected towards the lower-
density fluid accelerates in both the x- and y-directions, but ux increases at a faster rate
than uy and eventually, at a distance |y| of O(ρ0/|∇ρ0|), the body’s motion is reversed,
as indicated in figure 8 for α < 0, and it starts to move towards the denser fluid.

8. Concluding remarks
In this paper we have calculated the first-order steady flow generated by a body

moving in a density gradient. The first-order steady-state solutions developed here are
not valid in the far field (r�a/ε), nor in the inner region DI . The singularities associ-
ated with the density gradient and vorticity fields inDI are a general feature of inviscid
flows past impermeable bodies and result from the stretching of isopycnal surfaces and
vortical elements near the stagnation points. When the bodies are cusped at the at-
tached streamlines, the density gradient and vorticity field are not singular and the ex-
pressions for the velocity field are valid on the body surface providing ε�1/ log(a/b),
where b is the radius of curvature of the cusp. Similarily, the effect of molecular
diffusion will be to smooth out large density gradients, reducing the baroclinic torque
in DI , and when U × ∇ρ0 = 0, the vorticity field will be finite on the body surface.

The main results of this paper are the following.
(i) The flow around two-dimensional bodies moving perpendicularly to a density

gradient is affected by the density gradient in the locality of the body and does not
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∇ρ0 ·U = 0 ∇ρ0 ×U = 0
ρ0 = ρ0(y); U = (U, 0, 0) ρ0 = ρ0(x); U = (U, 0, 0)

Geometry Lift force Drag force

2D 1
2
(CM + 1)VU2 dρ0

dy
− 1

2
CMVU2 dρ0

dxbody

3D 1
2
CMVU2 dρ0

dy
− 1

2
CMVU2 dρ0

dxaxisymmetric
body

Table 1. Summary of results for the force on a body moving in a constant density gradient

produce any perturbation far from the body either by a downstream vorticity wake
(in the manner of three-dimensional bodies) or by means of waves in the far field (in
the manner of stably stratified flow). The flow produces a lift towards the denser fluid
whatever the relative velocity of the body and the fluid.

(ii) A three-dimensional body, axisymmetric about U , experiences a lift force but
induces a trailing vorticity component parallel and antiparallel to its velocity U ,
consequently generating a perturbation swirl velocity O(a|∇ρ0×U |), which extends a
distance |U |t downstream. We also established a relationship between the force acting
on a body moving perpendicularly to a density gradient or in a weakly sheared flow
(see Appendix A and table 1). This suggests that the experimental results of Wallis
(1996) for the force on bodies fixed in a shear also give information about the lift
force on a body moving perpendicularly to a density gradient. In addition, the results
from studies of bodies moving in a weak shear, such as the Pitot displacement effect
(Lighthill 1957), may be relevant to bodies moving in variable-density flows.

(iii) When a two-dimensional or axisymmetric body moves parallel to the density
gradient it experiences a force opposing its motion as it moves towards denser fluid
and accelerating its motion as it moves towards lighter fluid (see table 1). This is
qualitatively different to the effect of buoyancy forces in a weak density gradient
which leads to a drag force which does not depend on whether the body moves up or
down because fluid increases its potential energy when displaced in either direction
(Warren 1960).

(iv) Finally, the movement of a volume parallel to a density gradient produces a
remarkable inviscid wake ‘jet’ extending a distance Ut downstream. The direction of
the jet depends on whether the body moves into denser or lighter fluid. An estimate
of the jet speed is v2,x ∼ −(U · ∇ρ0)| ln(n/a)|a/ρ0, where n is the distance from the
attached streamline, and n is typically of the order of the boundary layer thickness in
viscous flows. When bodies are propelled downwards through an air/water interface
they produce an energetic upward spray jet probably aided by this mechanism.

Applying the lift and drag force formulae to trajectories of cylinder or spheres
shows that since both the inertial force and the rate of change of momentum are both
proportional to the volume V, the trajectories are independent of V. Also, bodies
projected with a velocity U in a region with a density ∇ρ0 initially slow down or
accelerate over a distance ρ0/|∇ρ0|, depending on the sign of (U · ∇ρ0) and the relative
magnitude of |U × ∇ρ0|, but ultimately tend to move in a direction parallel to the
density gradient whatever their initial direction.
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These results can be used to infer the motion of small-scale eddies or fluid lumps
(Prandtl’s 1925, ‘flussigkeit ballen’) in turbulent flows with strong density gradient
by considering them as the closed moving volume around vortex rings. They suggest
that fluid lumps moving relative to the mean flow and perpendicularly to a density
gradient would tend to be forced perpendicular to the flow and towards higher
density. This hypothesis is consistent with Panchapakesan & Lumley’s (1993) study of
low-density jets: they observed that the spreading rate and entrainment are enhanced
in low-density jets surrounded by fluid with higher density (in this case ρ0/|∇ρ0| is
much greater than the jet width). However, this conclusion does not apply to low-
density shear layers (Hermanson & Dimotakis 1989), where the flow is dominated
by large two-dimensional coherent structures. In this particular case the coherent
structures composed of low-density fluid are stabilized, perhaps by a similar action
to that of bubbles being attracted to a vortex centre (Sene, Hunt & Thomas 1994),
thereby reducing entrainment and spreading rate. Clearly further research is required
to reconcile the differences between observations in mixing layers and jets.

In the absence of shear, a mean density gradient also affects the diffusion of
turbulence and the boundary entrainment velocity Eb (Turner 1973) by imposing a
net force on a fluid element moving parallel to the density gradient. Thus turbulent
diffusion and entrainment may be increased or decreased depending on whether the
density gradient is antiparallel or parallel to Eb. These effects are probably even more
important in flames where the sharp density gradients at reaction fronts perhaps
reduce turbulent entrainment because in this case ρ0/|∇ρ0| is comparable with the
thickness of the flame region.

I.E. gratefully acknowledges financial support from St. Catharine’s College through
the Jeremy Haworth Fellowship. Professor Hawthorne generously loaned us a general
review on secondary flows.

Appendix A
The connection between the flow around a body moving steadily perpendicularly

to a density gradient and in a sheared flow is now explored. When the unperturbed
density field ρ0(y) has a rectilinear gradient and U = (U, 0, 0), the relative velocity
field v is steady and the density is constant along the streamlines (in the frame of
the body). The velocity field, v, can be transformed by Yih’s (1959) result (1.1) to the
steady flow around a body moving in a shear (see Drazin’s 1961 discussion). Since
the momentum and continuity equation can be written in streamline coordinates

ρvs
∂vs

∂s
= −∂p

∂s
and

∂(vsA)

∂s
= 0, (A 1)

where A is cross-section of a streamline and may be rewritten as

(ρ/ρB)1/2 ∂

∂s
((ρ/ρB)1/2vs) = −∂p

∂s
,

because ∂ρ/∂s = 0 and ∂(ρ1/2vsA)/∂s = 0, and ρB is a reference density. Defining
v′s = vs(ρ/ρ0)

1/2 shows that the rescaled velocity v′ satisfies

∇ · v′ = 0, ρ0(v
′ · ∇)v′ = −∇p, (A 2)

subject to the boundary conditions v′ → −U (ρ0(y)/ρB)1/2 as x′ ·U →∞. The rescaled
velocity v′ is equivalent to that in a constant-density flow around a body moving
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in a shear U(dρ0/dy)/2ρB (Hawthorne & Martin 1955). By using the expression for
the force on the body (6.1), and Bernoulli’s barotropic equation, the force on a body
moving in a shear described by (A2) is identical to the force on a body moving
perpendicularly to a density gradient.

Appendix B
The equivalence between the Hawthorne & Martin (1955) solution for the flow

generated by an axisymmetric body moving into a density gradient, and Lighthill’s
(1956) solution for the vorticity field generated by the same body moving in a weakly
sheared flow is demonstrated. The gradient of the drift function perpendicular to the
base streamlines is

dτ

d(−2ψ1/U)1/2
= −

∫ φ1

−∞

1

v4
1

dv2
1

d(−2ψ1/U)1/2
dφ, (B 1)

where τ is defined by (3.7). The gradient of the streamfunction is ∇ψ1 = (vrθ̂ − vθ r̂)R,
and since |∇(−2ψ1/U)1/2| = v1R/U(−2ψ1/U)1/2, then

dv2
1

d(−2ψ1/U)1/2
=
∇v2

1 · ∇(2ψ/U)1/2

|∇(−2ψ1/U)1/2|2 =
U(−2ψ1/U)1/2

v1R

∂v2
1

∂n
. (B 2)

Hence, ∫ s

−∞

U

v3
1

(−2ψ1/U)1/2

v1R

∂v2
1

∂n
ds = − dτ

d(−2ψ1/U)1/2
. (B 3)

Therefore

v1

∫ s

−∞

U2

v4
1

(−2ψ1/U)1/2

R

∂v2
1

∂n
ds=−U

2(−2ψ1/U)1/2

R

∂τ

∂n
=
U(−2ψ1/U)1/2

R

(
∂Xd

∂n
− 2v1,R

v1

)
.

(B 4)

Appendix C
The force acting on a two- or three-dimensional axisymmetric body moving parallel

to the density gradient is calculated from

Fx = −
∫
A

(p+ ρv2)nxdS −
∫
S

ρ(v · n̂)vxdS +

∫
V∞

(v · ∇ρ)vxdV . (C 1)

(1) (2) (3)

In two dimensions, V∞ = LW and V∞ = πLW 2 in three dimensions.

Term (1)

From (5.9), the pressure drop across the two ends of the control volume is O(ρBε
2U2),

and is negligible. Therefore∫
A

(p+ ρv2)nxdS =

∫
A

ρ(U2 − 2U(v1,x +U + v2,x))nxdS

= U2

∫
A

ρ1nxdS − 2

∫
A

ρU(v1,x +U)nxdS − 2ρBU

∫
A

v2 · n̂ dS. (C 2)
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The first term on the right-hand side of (C2) is∫
A

ρ1(x
′)nxdS=

∫
A

(
lim

x′/a� 1
ρ1(x

′)− lim
−x′/a� 1

ρ1(x
′)

)
dS=(V∞ − O(BV) + CMV)

dρ0

dx
,

(C 3)

where B = µW/VL in two dimensions, and B = µW 2/VL2 in three dimensions. It
should be noted that ρ1 is singular on the centreline, but the integral of ρ1 across A
is not singular. The rotational component of the flow decays more slowly than the
irrotational component, so that |∇φ2|� |vr2| on S and A. Therefore the contribution
from Term (1) is

− (CMV+V∞)U2 dρ0

dx
+ 2ρBU

∫
A

vr2 · n̂ dS − O(ρBBVU2). (C 4)

Term (2)∫
S

ρ(v · n̂)vxdS =

∫
S

ρ(v1 · n̂+ v2 · n̂)(v1,x + v2,x)dS

= −
∫
S

ρUv1 · n̂ dS +

∫
S

ρ(v1,x +U)v2 · n̂ dS −
∫
S

ρBv2 · n̂U dS +

∫
S

ρBv1 · n̂v2,x dS,

where terms of O(ε2) have been ignored. The second and fourth terms are negligible
compared to the first and third. The first term is∫

S

(
ρB + x′

dρ0

dx

)
v1 · n̂ dS = O(ρBBV) + (CM + 1)VU dρ0

dx
. (C 5)

The fluid is incompressible so that∫
S

vr2 · n̂ dS = −
∫
A

vr2 · n̂ dS. (C 6)

The contribution from Term (2) is

(1 + CM)VU2 dρ0

dy
− ρBU

∫
A

v2 · n̂ dA. (C 7)

Term (3) ∫
V∞

(v · ∇ρ)v1,x dV +

∫
V∞

(v · ∇ρ)v2,x dV .

The secondary velocity, v2,x, has a logarithmic singular on SB and an attached
downstream streamline but the volume integral of v2,x,∣∣∣∣∫

V∞
v2,xdV

∣∣∣∣ = O(εUV),

is finite. In addition,∫
V∞

v1dV =V∞U − (CM + 1)VU − O(BVU).

Using (2.12b) and the above expression for the volume integrals, we find that the
contribution from Term (3) is

− (V∞ − (CM + 1)V− O(BV))U2 dρ0

dx
.
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The total force is a given by the sum of Terms (1), (2) and (3). The force on the body
is independent of the control volume. An alternative choice of the control volume
could be the region bounded by the base streamlines; for this particular choice of
control volume, there are two additional contributions because the volume, V∞, is
decreased and secondly v · n̂ 6= 0 on S .
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